BASIC

INTERPRETER

VERSION 1:0

A

s - . — T 2 W %
M A Sy W A e .

REF ERENCE
MANUAL

— -

Information in this document is subject to change without notice and does
not represent a commitment on the part of the author. It is against the law
to copy Dick Smith Wizzard BASIC on cassette tape, disk, ROM, or any
other medium for any purpose without the written consent by the author.

FIRST EDITION — 1982

All rights reserved. Reproduction or use, without express permission, of
editorial or pictorial content, in any manner, is prohibited. No patent
liability is assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation of this
book, the publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of
the information contained herein.

©. Copyright 1982, Video Technology Ltd.

Contents

TABLE OF CONTENTS

PREFACE Page 7

CHAPTER 1 Page 9
INTRODUCTION

— What is a computer

CHAPTER 2 Page 13
DEFINITION

— Programming Concepts
— BASIC Interpreter

CHAPTER 3 Page 17
Getting Ready with the Dick Smith Wizzard Computer System
CHAPTER 4 Page 23

TO START PROGRAMMING
— Immediate-Execution Mode
Programming Mode

BASIC Program Formats

Line editing

— LIST

— Delete a line from the program
— LLIST

— NEW

CHAPTER b Page 31
NUMBERS & VARIABLES

Numeric Constants
— Numeric Variables
— LET Statement
REM Statement
ABS Function
SGN Function
RND Function

CHAPTER 6 Page 39
DATA MANIPULATION: OPERATORS

Arithmetic

Relational

Logic

Functional

[

CHAPTER 7
STRING FUNCTIONS

— Character strings
String Constants
String Variables

— String Manipulation

— String Functions:
LEFT $
RIGHT $
MID $
CHR $
STR $
LEN
VAL
ASC

— String Comparsion

CHAPTER 8
SYSTEM CONTROL
- STOP

END

CONT

CNTL/C

RESET

CHAPTER 9
LOOPING & CONDITION BRANCHING
— IF...THEN
— FOR...NEXT
— GOSUB/RETURN
- GOTO

CHAPTER 10

ARRAYS
- DIM

CHAPTER 11

INPUT/OUTPUT COMMANDS
— INPUT

— PRINT

—~ LPRINT

—~ TAB

— READ/DATA

— RESTORE

Contents

Page 49

Page 59

Page 65

Page 73

Page 77

CHAPTER 12

TAPE STORAGE
— CSAVE
— CLOAD
— CRUN

CHAPTER 13

GRAPHICS & SOUND FUNCTIONS
- CLS

COLOR

CHAR

PLOT

SOUND

Joy

[I A

CHAPTER 14

SYSTEM MEMORY ACCESS
— PEEK
— POKE

CHAPTER 15
DICK SMITH WIZZARD SYSTEM EXPANSION

APPENDIX:
(A) TABLE OF BASIC STATEMENTS
{B) ERROR MESSAGES
(C) TYPICAL PROGRAM EXAMPLES
(D) ASCII Codes

Contents

Page 85

Page 91

Page 107

Page 111

Page 115

Preface

Preface

This manual is intended to serve the beginner as an introduction to
programming in BASIC on the Dick Smith Wizzard Computer System.
Starting at the most elerhentary level, it introduces the reader to the
fundamentals of BASIC, and the procedures of creating programs on the
Dick Smith Wizzard Computer System. It covers all the concepts and state-
ments needed for fundamental programming in BASIC and presumes no
prior knowledge of BASIC or of programming in general.

The reader should try out new statements and programming concepts
as they are introduced by keying in and executing the example programs.
One should experiment with the example programs by making changes to
them, predicting the effects of the changes, and then confirming or
correcting one’s knowledge based on the observed effects. As soon as
possible, one should begin to write programs that solve simplified
problems wihtin one’s particular area of interest. Only in this manner can
the concepts and cgpabilities introduced here become practical knowledge.

There is nothing that can be done from the keyboard that can damage
a Dick Smith Wizzard Computer System. Cautions are included in the text
when statements that might destroy data files are introduced. Thus, the
reader should feel free to experiment with the Dick Smith Wizzard Com-
puter System at every stage of learning.

In general, the reader should follow the sequence of presentation in
the text; however, there are other alternatives. Chapter 12 which discusses
the use of tape storage may be read at anytime when the reader wishes to
save a program on the cassette tape. Although this manual is specially
written for one who wishes to learn to program in BASIC on Dick Smith
Wizzard Computer System, it can also serve as a general introduction to
programming in BASIC on any system. However, the reader must be aware
that the BASIC language has many forms. There are slight differences
between one implementation of BASIC and another.

Finally, we hope that this manual will help you to learn the funda-
mentals of BASIC and the fundamental concepts in computer program-
ming.

HAVE FUN WITH YOUR DICK SMITH WIZZARD COMPUTER
SYSTEM!

CHAPTER

INTRODUCTION
— What is a computer

10

Chapter 1

What is a computer?

Computers are devices which perform various operations based on instruc-
tions which have been given by people who use them.
A computer system consists of the following units in general:

i) central processing unit (CPU)} — this performs operations speci-
fied in the instruction, such as arithmetic and logic operations; It
can be considered as the brain of the computer system.

it} memory unit — this stores instructions and information generated
by the computer or given by the user. This unit is resident inside
the computer, and the CPU gets information from it directly.

ili) mass storage unit — this stores instructions and information gen-
erated by the computer or given by the user except that this unit
is resident outside the computer. For example, the tape storage
unit and the floppy disk unit are memory storage units. Infor-
mation stored in these units have to be transferred to the memory
unit before the CPU can process them.

iv) input device — this allows the user to enter instructions or infor-
mations to the computer, e.g. keyboard.

v} output device — this receives information or results sent from the
computer, e.g. printer,

The input and output devices together act as a two-way communication
channel between the computer user and the computer system,

Although the size of computer systems varys from one to another,all
practical computer systems require the above mentioned units in general.

1

Chapter 1

computer
T.Vor MASS STORAGE
Video Monitor DISK
output device CPU MASS storage device
— memory unit]
ASCII
KEYBOARD
input devices
CASSETTE
PRINTER — TAPEUNIT
output device MASS storage device

Fig. 1 Configuration of a Computer System in general.

12

CHAPTER

DEFINITION
— Programming Concepts
— BASIC Interpreter

13

14

Chapter 2

PROGRAMMING CONCEPTS

The process of specifying a set of instructions for a computer is called
programming, and the set of instruction is called a program. The individual
preparing a program is called a programmer.

There are two steps involved in preparing a program for a computer.
First, the programmer must know what instructions to specify, and the
order in which to specify them. Second, he must be able to communicate
his specifications to the computer. Communication is accomplished by
means of a programming “‘language’ which the programmer writes, and
the computer “reads’’ to decide what to do.

There are many programming languages in use today. Some are
designed for very specialized applications, and some are designed for more
general use. BASIC is a language in the latter category.

BASIC INTERPRETER

BASIC, an acronym for Beginner’s All-purpose Symbolic Instruction Code,
has a simple English vocabulary and few grammatical rules while resembl-

simple, it is a powerful language, providing arithmetic capabilities, logic
comparison, subscripting, common trigonometric functions, lists, arrays,
and alphanumeric character string manipulation.

Programs written in BASIC are translated by a language translation
program into a language that the central processor unit understands. This
language translation program is called the BASIC Interpreter, and is
resident in the BASIC cartridge provided.

The next chapter will tell you how to set up your Dick Smith Wizzard
Computer System, and the following Chapters will explain the BASIC
statements with examples provided to help you to understand them.

15

16

CHAPTER

Getting Ready with
Dick Smith Wizzard
Computer System.

17

18

Chapter 3

GETTING READY WITH DICK SMITH WIZZARD COM-
PUTER SYSTEM

To set up Dick Smith Wizzard Computer System, yo'u should
have these parts.

MAIN UNIT WITH
KEY BOARD

o0
—
= AC POWER
—
0 ADAPTOR
o

COLOR TV

BASIC CARTRIDGE

19

Chapter 3

AERIAL SWITCH BOX

The Aerial Switch Box provides you with a convenient means of using
your television set for either normal TV programmes or for games.

® Remove the co-axial aerial cable from your television set and connect
it to the Switch Box.

® Connect the co-axial cable from the switch box to the aerial socket of
your television set.
® Connect the co-axial cable from the Main Unit to the Switch Box.

Once the instaliation is done, you can push the switch to make your

choice.
TV AERIAL CABI;/
IIIII

\/

\ TV SET

TO MAIN UNIT Fig. 3.2

STEPS TO SET UP YOUR COMPUTER SYSTEM

1. Make sure that the Main Unit Power Switch is off.
2. Connect the AC adaptor power plug to the Main Unit power socket.
3. Plug the wall plug of the AC Adaptor into a normal wall AC outlet.

MAIN UNIT (BACK)
POWER PLUG

CO-AXIAL CABLE
Fig. 3.3

20

Chapter 3

4. Push the switch on the Switch Box to Game.
5. Insert the BASIC interpreter cartridge into the Main unit slot.

MAIN UNIT

6. Turn on the television set and select the channel button on your TV
you have chosen. The channel that you choose for the system is
usually the spare one that you do not use for regular TV programmes.

7. Push Main Unit Power Switch to ON. If you are setting for the very
first time, now tune the channel to receive Dick Smith Wizzard BASIC
DISPLAY.

Note: If your TV set has an AFT. (automatic Fine Tuning) button,
make sure this switch is off when tuning.

RESET BUTTON =<

POWER ON/OFF SWITCH

MAIN UNIT
Fig. 3.5

8. Now the computer system has been set up and ready for key in state-
ments.

21

Chapter 3

PRECAUTIONS

1. Keep the Main Unit keyboard and BASIC cartridges away from
liquids.

2. Avoid exposing the BASIC cartridges, the Main Unit or keyboard
1o excessive heat. Please keep them in good ventilation conditions.

3. Switch off power when not in use.

4. Do not drop the Main Unit, keyboard or BASIC cartridge. Handle
them with care.

5. Insert BASIC cartridge into the Main Unit slot slowly and make sure
power is turned off when inserting or removing BASIC cartridge from
the Main Unit.

6. Do not stick fingers into the open end of the cartridges. The static
electricity from your fingers may in some cases damage sensitive
electronic components in the cartridges.

7. Remove BASIC cartridge from the Main Unit when not in use.

SWITCH YOUR TELEVISION SET BACK TO NORMAL USE

1.
2.
3.

Turn off power.
Push switch on the Aerial Switch Box to TV antenna.
Your television set is now ready for normal use.

SUMMARY OF SET UP PROCEDURES

1.
2,

oo hw

22

Push the BASIC cartridge into the Main Unit slot properly.

The AC adaptor is properly plugged into wall socket and the other
end to the Main Unit.

Aerial Switch Box is set at Game.

All co-axial cable are properly plugged in.

The power switch of the Main Unit and your TV set are on.

Tune to the right channel.

CHAPTER

TO START PROGRAMMING

— Immediate Execution Mode

— Programming Mode

— BASIC Program Formats

— Line editing

— LIST

— Delete a line from the program
— LLIST

— NEW

23

24

Chapter 4

TO START PROGRAMMING

The computer executes statements (instruction given by the programmer)
in two modes, namely the immediate-execution mode and the deferred-
execution (program) mode.

IMMEDIATE-EXECUTION MODE

Any statement which does not have a “line number” at the beginning of
the statement will be executed immediately after the RET'N (* RET'N
should be read as RETURN) key is depressed.

Examples: PRINT 2+4 RET'N
6
PRINT 2+4. 3/6 RET'N
6 2.5
PRINT “RESULT”, (2+4)/(3/6} RET'N
RESULT 12

The immediate-execution mode makes the computer work like a cal-
culator, except that this mode of operation of the computer is more power-
ful than a calculator. It can evaluate more than one expression at a time
and also it can handle character strings.

The PRINT statement is necessary when using immediate-execution
mode, because without it the result would not be displayed on the screen.

Now, try the above examples and observe the result.

DEFERRED-EXECUTION (PROGRAM) MODE

Any statement which has a “line number” at the beginning of the state-
ment will not be executed after the statement has been ended by the
RET'N key, only after typing RUN and RET'N.

Examples: 70 PRINT 2+4 RET'N

RUN RET'N

6

10 PRINT 2+4, 3/6 RET'N
RUN RET'N

6 2.5

25

Chapter 4

19 PRINT 7+9 RET'N
20 PRINT 2+4, 3/6 RET'N
30 PRINT “RESULT”, (2+x6) RET'N

RUN RET'N

16

6 g5
RESULT 12

In the last example, one can see that line number “10" is executed
first, and then line number “*2@" is executed next, and line number “‘3¢"
is executed last. This is the sequence the computer executes statements in
a program. Statements (lines) with smaller line numbers will be executed
earlier than statements (lines) with larger line numbers.

But one can actually tell the computer which statement is to be
executed next by using statements such as GOTO etc which will be
discussed in chapter 9.

Notice that using the RUN command, the computer will start to
execute the program from the very beginning. If you want to start your
program other than the first line.

Use: RUN (the line number)

Example: 70 PRINT 7+9 RET'N
20 PRINT 2+4, 3/6 RET'N
30 PRINT “RESULT”, (2/4/3/6) RET'N

RUN 20 RET'N
6 0.5
RESUTL 12

26

Chapter 4

BASIC PROGRAM FORMATS

1. Every program statement begins with a “line number’’ eg. 19, 26 and
30 etc.

2. A line number is an integer ranging from @ to 9999,

3. Following the line number is the correct BASIC statement, otherwise
the computer will respond with a “SYNTAX ERROR" error
message.

Example: 70 PRIMT 2+3 RET'N
RUN (RET'N)
" SYNTAX ERROR

4. Every program line should be ended by a RET’N.

line editing

If you make a mistake while you are entering a program statement,

there is a < key to help you to move back to the wrong entry and make a
correction.

Example: PRIMT
now depress < and the screen will display

PRIM

now depress < again and the screen will display
PRI/

now you can enter the correct alphabet.

27

Chapter 4

The LIST command is used to display the entire program stored in the
memory currently entered; and the statements are listed according to their
“line number’’ in an ascending order.

Example: 47 PRINT “GOOD BYE” RET'N
25 PRINT 2+3 RET'N
33 PRINT 4+3 RET'N
12 PRINT “HELLO” RET'N

LIST RET'N

12PRINT “HELLO”

25 PRINT 2+3

33 PRINT 4+3

47 PRINT ““GOOD BYE”

if a “line number” is entered following the LIST command, only the
line specifed is listed.

Example: L/ST 47 RET'N
47 PRINT “GOOD BYE”

will be displayed.

If two line-numbers separated by a comma are entered following the
LIST command, the statement lines with line-numbers between the two
numbers are listed.

Example: L/ST 25,33 RET'N

25 PRINT 2+3
33 PRINT 4+3

28

Chapter 4

[:elete a programs line

To delete a line from the program all you have to do is to type in the
“line number’’ of the program line which you want to delete (erase) and
type RET’N. Then that line will be deleted from the program (using the
previous example program.):

Example: 72 RET'N
LIST RET'N
25 PRINT 2+3
33 PRINT 4+3
47 PRINT “GOOD BYE"”

Program line number 12 has been deleted. Try to delete line number
33 yourself.

LLIST
LLIST

LLIST is similar to LIST except it lists the whole program on the
printer not on the TV screen.

Syntax: LLIST.

When LLIST is used, the printer and the 1/O interface must be ready.
For details please refer to the operating manual of the 1/0 interface.

NEW

The NEW command is used to erase (clear) the entire program
currently stored in the memory.

Now, type
NEW RET'N
the above example is erased.

Now, enter the LIST command see if you can find any listing.

29

Chapter 4

*NOTE

BY NOW, WE ASSUME THAT THE READER HAS FAMILIARIZED
HIMSELF WITH THE USE OF THE RET'N KEY. STARTING FROM
THE NEXT CHAPTER THE RET'N ENTRY WILL NOT BE PRINTED

OUT IN THE EXAMPLES.

30

CHAPTER

NUMBERS & VARIABLES
— Numeric Constants

— Numeric Variables

— LET Statement

— REM Statement

— ABS Function

— SGN Function

— RND Function

31

32

Chapter 6

Numeric Constants

Numeric Constants retain a constant value throughout a program, and can
be positive or negative. Numeric Constants can be written using decimal
notation as follows:

+2 ,34, 0.432, 3E18, 4E(-35) etc.

The range of numbers which can be handled is

1073¥ <ng 1038

Numeric Constants

Numeric Variables

A variable is a data item whose value can be changed during program
execution. A numeric variable is denoted by a fixed variable name. Anyone
of the 26 letters of the alphabet is a legal name for a variable. Value of
variables are assigned by LET, INPUT statements. The value assigned to a
variable does not change until the next time a LET or INPUT statement is
encountered, which assigns a new value for theat variable or until the
variable is incremented by a FOR statement. All variables are set equal to
@ before program execution. It is necessary to assign a value to a variable
only when an initial value other than @ is required. However, it is good
programming practice to set variables equal to ® whenever the program
requires. This would provide a record of values assigned to variables.

Numeric Variables

33

Chapter 5

LET

LET Statement

The LET statement assigns the value of the expression on the right of
“equal sign” to a variable on the left.

Each LET statement is of the form:
LET Variable = Expression

This statement does not indicate algebraic equality, but performé the
evaluation within the expression (if any) and assigns the resulted value to
the indicated variable.

Example: 71OLETA=5
20 LETB=20
39 LETC=60
40 LET A =A+5
50 PRINT A+B+C
60 END

RUN
99

In line 40, the old value of A is increased by 5 and becomes the new
value of A.

The BASIC interpreter allows the user to omit the word LET from the
LET statement. The user may find it easier to type: 70 A = 5 than 10
LETA=5

34

Chapter 5

Remark Statement

REMARK

It is often desirable to insert notes and messages within a user program.
Information such as the name and purpose of the program, how to use it,
how certain parts of the program work and expected results at various
points is useful in the program for ready reference by the reader. It is
ignored by the BASIC interpreter and is not executed.

Syntax: REM (Anything you want to type in})

Example: 70 REM THIS IS REMARK
20 REM BASIC PROGRAMMING
30A=3
40 PRINT A
50 END

RUN
3

35

Chapter b

Absolute Function, ABS (X)

The ABS Function returns the absolute value of the expression. For
example: ABS (—34.67) = 34.67

Syntax: ABS (expression)

Example: 710 PRINT ABS (3+4—6+5)

RUN
23
SGN
Sign Function, SGN (X)
Tha sian fuination raturne a valua of +1 if ic a nositive valuie A if Wi O
ne :lgu TUNCTICN TOTUMS @ Vailue Cv +1 IV A S apositive vaille, vy it A is ¥,

and —1if X is negative. For example:
SGN (3.42) = 1;SGN (—42) = —1 and SGN (23-23) =0

Syntax: SGN (expression)

Example: 10A=-—12
30 PRINT SGN (A); SGN (A—A)

RUN

36

Chapter 5

RND

RND (9)

The Random Number function, RND (@), produces a random number
between @ and 1.

Syntax: RND (@)

Example: 10 FORI/I=1T05
20 PRINT RND (@)
30 NEXT |
40 END

RUN
0.53675
0.1463
0.80221
0.34245
0.36985

RND (N)

The Random Number function, RND (N), where N is a positiive number,
produces a random integer between @to N.

Syntax: RND (N)

Example: 10 FORI=1T05
20 PRINT RND (10)
30 NEXT
40 END

RUN

ONNAOD

37

38

CHAPTER

DATA MANIPULATION: OPERATORS
— Arithmetic

— Relational

— Logic

— Functional

39

40

Chapter 6

Mathematical Operators

Operators

There are 4 types of operators namely, arithmetical, relational, logical and
functional.

Mathematical Operators

The BASIC interpreter automatically performs the mathematical opera-
tions of addition, subtraction, multiplication, division and exponentiation.
Formula to be evaluated are represented in a format similar to standard
mathematical notation. There are five arithmetic operators used to write
such formula as follows:

Operator Example Meaning
+ A+B AddsBto A
- A-B Subtracts B from A
* A+B Multiplies A by B
J A/B Divides Aby B
x A+B Calculates A to the power of B j.e, AB

The use of parentheses in expressions will change the order of
operators. Operators inside parentheses are performed first. Inside the
parentheses, the normal operator precedence is observed. The arithmetic
operations are performed in the following sequence, with the operation
described in item 1 below having precedence.

1. Any formula within parentheses is evaluated before the parenthesized
quantity is used in further computations. Where parentheses are
nested, as follows: A+(B+(D#+2)) the innermost parenthetical quantity
is calculated first.

2. In the absence of parentheses in a formula, BASIC interpreter per-
forms operations in the following order:

1st Exponentiation

2nd Unary minus

3rd Multiplication and division
4th Addition and subtraction

41

Chapter 6

Thus, for example, —A**B with a unary minus is a legal expression
and is the same as —(A#+B). This implies that —2**2 will be evaluated
as —4. The one exception to this rule is that the term A**—B is
allowed and is evaluated as A**{—B).

3. In the absence of parenthesis in a formula involving more than one
operation on the same level (see item 2 above), the operations are
performed left to right, in the order that the formula is written. For
example:

A/B/C is evaluated as {A/B)/C
A=*B/C is evaluated as (A*=B}/C

The expression A+B*C»+D is evaluated in the following order:
1. Cis raised to the D power.

2. The result of the first operation is multiplied by B.

3. The result of the previous operation is added to A.

The user is encouraged to use parentheses even where they are not
strictly required in order to make expressions easier to read and to reduce
the possibility of writing an unintended expression.

Examples
Algebraic Expression BASIC Expression
3X-2Y 3 X—=2+Y
X3y Xxx2%Y
B2—-4AC B*x2—4*AxC

42

Chapter 6

Belational Operators

Relational Operators

Relational operators compare 2 values and make decisions regarding the
program flow of a BASIC program. The result of comparison is either *“1*
or “@”. “1” means true while @’ means false.

Operator
<>

<

>
<=or=<
>=or=>
Example:

Relation Tested Expression

Equality X=Y

Inequality X<>Y

Less than X<Y

Greater than X>Y

Less than or equal to X<=Y,X=<Y

Greater than or equal to X>=Y,X=>Y
19 INPUT A, B

20 IF A< B THEN PRINT “A < B”
30 IF A =B THEN PRINT “A=B”
40 IF A > B THEN PRINT “A > B”
50 END

RUN
210
?5
A>B

43

Chapter 6

Logical Operators

Logical Operators

Logical operators are used in IF-THEN and such statements where condi-
tion is used to determine subsequent operations within the user program.
For this discussion, A and B are relational expressions having only TRUE
(1) and FALSE (0) values. Logical operators are performed after arithme-
tic and relational operations. The logical operators are as follows:

Operator Example Meaning
NOT NOT A The logical negative of A. If Ais
true, NOT A is false.
AND A AND B The logical product of Aand B. A

AND B has the value true onlyifA
and B are both true and has the
value false if either A or B is false,

OR AORB The logical sum of Aand B.AORB
has the value true if either A or B
or both is true and has the value
false only if both are false.

44

Chapter 6

The following tables are called truth tables. They illustrate the results
of the above logical operations with both A and B given for every possible
combination of values.

A } NOT A
T F
F T

TRUTH TABLE FOR “NOT" FUNCTION,

A B A AND B
T T T
T F F
F T F
F F F

TRUTH TABLE FOR “AND"” FUNCTION,

A B AORB
T T T
T F T
F T T
F F F

TRUTH TABLE FOR “OR” FUNCTION.

45

Example:

46

Chapter 6

19 INPUT A, B, C
20 IF A>BAND B>C THEN PRINT “A>B>C”
30 1F NOT (A >B) OR NOT (B> C)

THEN PRINT “A>B>C IS FALSE”

40 END

RUN

210

25

27
A>B>CISFALSE

Chapter 6

Functions

Within the course of a user's programming experience, he encounters
many cases where relatively common mathematical operations are per-
formed. The results of these common operations can often be found in
volumes of mathematical tables. e.g. sine, cosine, square root, log, etc.
Since it is this sort of operation that computers perform with speed and
accuracy, such operations are built into the BASIC interpreter. The user
does not require to look up tables to obtain the value of the sine of 25
degrees or the natural log of 150. When such values are to be used in an
expression, intrinsic functions, such as:

SIN (25*3.14/180)
LOG (15@)

are substituted.

The various mathematical functions available in our BASIC interpreter
are detailed in the following table.

Function
Code Meaning

ABS {X) Gives the absolute value of X,

SGN (X) Gives the sign function of X, a value of 1 preceded
by the sign of X, SGN (@) =@

INT (X) Gives the greatest integer which is less than or equal
to X, {INT(—@.5) = —1).

COS (X) Gives the cosine of X (in radians).

SIN (X) Gives the sine of X {in radians).

TAN (X) Gives the tangent of X (in radians).

SQR (X) Gives the square root of X.

EXP {X) Gives the value eX, where e = 2.71828.

LOG (X) Gives the natural logarithm of X, loge X.

RND (@) Gives a random number between @ and 1.

RND (N) Gives a random integer from @ to N.-1

In sin (X), cos (X) and tan (X), the range of X should be: —1000 < X
< 1000.

47

Example:

48

10 REM TO PRINT A SINE AND COSINE TABLE
20 PRINT “SIN (X)”, “COS (X)”
30FORX=0TO2STEPA.5

40 PRINT SIN (X}, COS (X)

50 NEXT

RUN

SIN (X) COs (X)
g 1
0.47942 0.87758
0.84147 0.5403
9.9975 0.07973
0.9993 —4.41614

Chapter 6

CHAPTER 7

STRING FUNCTIONS
— Character Strings
String Constants
String Variables
— String Manipulation
LEFT$
RIGHTS
MID$
CHRS$
STR$
LEN
VAL
ASC
— String Comparison

49

Chapter 7

CHARACTER STRINGS

The previous chapters describe the manipulation of numerical information.
However, the BASIC interpreter also processes information in the form of
character strings. A string, in this context, is. a sequence of characters
treated as a unit. A string can be composed of any combination of ASCI|
characters.

Example: “ABC”
“BASIC”

String Constants

String Constants

Just as numbers can be used as constants or referenced by variable names,
BASIC interpreter also processes character string constants. Character
string constants are delimited by double quotes. For example:

10 LET Ag =“XYZ123"”

This means that the value of A$ is the character string XYZ2123.

String Variables

String Variables

Variable names can be assigned to strings. Any letter of the alphabet
followed by a dollar sign ($) character is a legal name for a string variable
such as A$. The maximum value of a string variable is 32 characters.
During execution, the length of any string expression cannot exceed 32
characters.

51

Chapter 7

Manipulation

Dick Smith Wizzard BASIC allows programmers to manipulate strings. The

only operator for string expressions and variables is ‘+’. ‘+' means concate-
nation (linking).

String Manipulation

Example 1: 10 LET A$="“XYZ123"
20 P$ = A$ + “PQR”
30 PRINT P$
40 END

RUN
XYZ123 PQR

Example 2: 10 A$=""
20FORI=1T05

DA AP = A 4 ss4sr
O AP T AP T A

40 PRINT A%
50 NEXT |

RUN

#

HE
HHH
HHEH#E
HHEHEHH

52

Chapter 7

STRING FUNCTIONS

Besides intrinsic mathematical functions (e.g. SIN, LOG), our BASIC inter-
preter provides various functions for character string manipulation. These
functions allow the program to perform arithmetic operations with
numeric strings, concatenate two strings, access part of a string, determine
the number of characters in a string, generate a character string corres-
ponding to a given number or vice versa, search for a substring within a
larger string and perform other useful operations.

LEFTS

Syntax: LEFT$ (String expression, numeric expression)
e.d. LEFT$ (A$, N)
It returns a substring from the first character (the leftmost
characters of the string A$) through the Nth character.

Example: 710 A$="ABC”
20C8=LEFTS (A$+“XYZ", 3+1)
30 PRINT C$

RUN
ABCX

RIGHTS

Syntax: RIGHT$(String expression, numeric expression)
e.g. RIGHT$ (A$, N)
It returns a substring of the string A$ consisting of the last N
characters.

Example: 70 A$=RIGHTS (“BASIC”, 3)
20 PRINT A8

RUN
Sic

53

Chapter 7

MID$

Syntax: MID$ (String expression, numeric expression, numeric expression)
e.g. MID (A$, M, N)
It returns a substring of the string A$ starting from the Mth
character with a length of N.

Example: 10 A$= “ABCDEFGH"
20C$=MID$ (AS, 3, 4)
30 PRINT C$

RUN
CDEF

Syntax: CHR$ (Numeric expression)
e.g. CHRS (N)

it generates a

-character siring having the ASCII value o

(see Appendix D). For example CHR$(65) is equivalent to ““A".
Only one character can be generated.

Example: 10 FOR I=65T0 70
20 PRINT CHR$ (1)
30 NEXT I

RUN

TMOUO®™DD

54

Chapter 7

Syntax: STR$ (Numeric expression)

e.g.

Example 1:

Example 2:

STR$ gives a string expression of a numeric argument.

10 A$ =STR$ (3*2+1)
20 C$ = “00"+A$
30 PRINT A%, C$

RUN
7007

10 A% =STRS$ (0.125 + 0.5)
2a C$ = A$+”K”

30 PRINT C$
RUN
7.625K
LEN

Syntax: LEN (String expression)
e.g. LEN (A$)

It returns the number of characters, including blank spaces in

the string A$.

Example 1:

Example 2:

10 A8 = “ABCDEF”
20X =LEN (A3)
30 PRINT X

RUN
6

7” A$= uXY”

20 C$="123"

30 X = LEN (A$+C$)+6
40 PRINT X

RUN
11

55

Chapter 7

Syntax: VAL (String expression)
e.g. VAL(A$)
It returns the numeric value of the string expression.

Example: 10 AS$="123+1"
20 X = VAL (A$+“—100")
30 PRINT X

RUN
24

ASC

Syntax: ASC (String expression}
e.g. ASC (A$)
It returns the ASCIl decimal value of the first character in

Adﬁ ~ H i " .
AS. For example the ASCI!l decima! value of “X' is 88, If

B$ = “XAB”, then ASC(B$) = 88

Example: 10 X =ASC (“AXY”)
20 PRINT X

RUN
65

56

Chapter 7

String Comparision

The relational operators can also be applied to string expressions as they
can to numeric expressions. e.g. A$ = “123A", X

The comparision is done by taking the corresponding numerical value
of the string characters and then comparing. According to Appendix D we
know the value for ‘A’ is 65, ‘B’ is 66, ‘C’ is 67 and ‘D’ is 68, etc. We can
then have the following examples working.

Example: 10 A$=“AA"
2a B$ = ”BA 7
30 1F A$ < B$ THEN PRINT 20

RUN
20

* Since the numerical value of character A is less than the numerical

value of character B (65 is less than 66, therefore A$ is less than BS.)

Example: 10 A$=“ABC”
20 B = “ABD”"
30 IF B$ > A$ THEN PRINT 20

RUN
20

The first two characters of each string are equal. Then the computer
will search for the third character and do the comparision. i.e. Com-
pare “D" and “C"”. We know the numerical value of “D” is 68 and
"“C" is 67. We can therefore conclude that B$ is greater than AS$.

Examples: 70 A$ = CHRS (30*2+6)
20 IF A$ > ="B” THEN PRINT 1
30 IF A$ >="9” THEN PRINT 2

RUN
1
2

57

Examples:

Examples:

58

Chapter 7

10 W$ = “BASIC”

20 X$ = “BA”

30 IF LEFT$ (W8, 3) > X8 THEN 60
40 STOP

60 PRINT X$

RUN
BA

10 W8 = “APPLE”

20 X$ = “ORANGE”

30 IF W$ <> X$ THEN 60
40 STOP

60 PRINT X$

RUN
ORANGE

147 DC
iy REM. . .PRIN

A
20FORI=1T0O 128

30 PRINT CHR$ (1)

40 NEXT |

RUN

'2 * 128 ASCI! characters will be printed. Only
c printable characters are shown on the screen.

CHAPTER 8

SYSTEM CONTROL
— STOP

— END

— CONT

— CNTL/C
— RESET

59

60

Chapter 8

System Control

In order to facilitate you to control your program execution and debug-
ging, several control commands/statements are introduced. They are the
STOP & END statements and CONT & CNTL/C commands.

You can also stop your looping program by pressing the “RESET”

button.
STOP

The STOP statement terminates program execution and returns
control to command mode. It can occur several times throughout a single
program with conditional jumps determining the actual end of the
program.

Syntax: line number STOP

After execution, it causes
STOP AT line-number

to be printed.

A CONTINUE command entered at this point resumes execution at
the statement following STOP (see latter section). The STOP statement in
fact may facilitate you to debug programs since you can add break points
at various locations of your program. Hence, you can trace the program
execution and examine the intermediate results of the variables in the
Immediate — execution mode.

Example: 70 PRINT “TEST STOP”
20 PRINT 123
30 STOP
40 END

RUN

TEST STOP
123

STOP AT 30

61

Chapter 8

END

The END statement is used to terminate program execution. It must
be the last statement in a BASIC program.

Syntax: line number END.

The line number of the END statement should normally be the largest
line number in the program. A program will execute without an END state-
ment. However, it is a good practice to include an END statement since it
is generally accepted by all BASIC interpreters.

Unlike STOP, a program which has stopped after END cannot be
continued by the CONT command. (latter section)

CONT

The user can place STOP statements liberally throughout the program.
Each STOP statement causes the program to halt and print the line

mirrmmbnac At aaslaial sl QCTND Anniirad o H H
number at which the STOP occured. The user can then examine various

data values, change them in immediate-execution mode, and give the
CONT command to continue program execution.
CNTL/C

It is already known that STOP can halt a program at pre-determined
points. On the other hand, the user can also halt program execution at any
time by typing CNTL and C together. Immediate mode can then beused to
examine and/or change data values. Typing the CONT command resumes
program execution.

When a program is interrupted by typing the CNTL/C combination, it
causes the following to be printed:

STOP AT

line-number, statement.

CNTL/C Combination:
CNTL
*Press the above two keys simultaneously(or hold down CNTL and press C).

62

Chapter 8

RESET

On the main console, there is a RESET button next to the Power
IN- OFF switch. This button is used to reset the computer system.
Nhen this button is pressed, the computer will stop running your program.
All characters are reset to normal form.

So if your program is in a dead loop because of some mistakes in
srograming and you cannot exit the loop by CTL-C, you can press the
outton. The BASIC program that you have written will not be affected.

RESET BUTTON
—_— / ™

(D O)
I]DDDD? Alalelal=ls)

@ gooononl} lloocooo @
oooooo| flococaa
oocoogl| {lbocooco

" "
Fig. 8.1

63

CHAPTER

LOOPING & CONDITION BRANCHING
— IF ... THEN

— FOR ... NEXT

— GOSUB/RETURN

— GO TO

65

66

Chapter 9

In this chapter, we will discuss statements which allow the programmer to
direct the computer to execute a program statement based on the results or
conditions of arithmetic and logical operations; the programmer can aiso
direct the computer to execute any program line unconditionally.

IF ... THEN

Program flow is directed under conditions established in a logical
expression.

In writing programs, we need a statement that can provide a condi-
tional branch to another statement. The IF ... THEN statement does just
that.

Syntax: IF logical expression THEN BASIC statement or
Line number.

Example: 10S=¢0
20N=0
SON=N+17T
40 S = S+N
50 IF N <> 109 THEN 30
60 PRINTS
70 END

RUN
55

67

Chapter 9

FOR...NEXT

One advantage of computers is their ability to perform repetitive
tasks. The FOR ... NEXT loop performs a series of BASIC statements for
a given number of times. Suppose we want a table of square roots, for the
integers from 1 to 10. We need not write the same statement 10 times for
the same function. Instead, we use looping to do it ten times.

Example: 710 FORN=1T05
20 PRINT “ROOT OF”; N; =", SQR (N)
39 NEXTN

RUN

1

2

3

4 1
5 25

The above exampie repeaE iine 20 five times with increment of 1
each time. However, we can also indicate the step size for values other
than 1. If we want to find only the square root of the odd numbers from 1
to 10, we must modify the above example.

Example: 7@ FORN=1TO 10 STEP2
20 PRINT “N=", SQR (N)
30 NEXTN

RUN

(S I Y

Syntax: FOR VARIABLE = Exp 1 TO Exp 2 STEP Exp 3. STEP is the
increment value; if it is omitted the increment value is 1. Exp 1,
Exp 2 and Exp 3 are simple arithmetic expressions. Exp 1 is the
starting value and Exp 2 is the upper limit.

All FOR loops must be closed with a NEXT statement.

Syntax: NEXT (Variable)
The variable name of the NEXT statement must be the same as
the variable name used in the FOR statement, See examples above.

68

Chapter 9

GOSUB/RETURN

Frequently, identical or nearly identical operations must be per-
formed repeatedly within a progra-m. It is impractical to repeat the same
set of instructions again and again in the program because this will waste a
lot of computer memory and programmer time. When the same operation
must be performed at several different locations within a program, it is
wise to make it into a subroutine. Whenever we want to execute this sub-
routine, we use the GOSUB statement. All subroutines must be ended with
a RETURN statement, which directs the computer back to the statement
immediately following the GOSUB in order to continue executing the rest
of the program.

Syntax: GOSUB (1st Line number of the subroutine)

(1st Line number of the subroutine)7

. SUBROUTINE

RETURN

69

Chapter 9

GO TO

The GO TO statement transfers program execution immediately and
unconditionally to a specified program line. Usually the specified line is not
the next sequential line in the program.

Syntax: GO TO < line number >

The line number to which the program jumps can be either greater
than or less than the current line number. It is thus possible to jump
forward or backward within a program.

Example: 718N =1
20S=0
30 S=S+N
49 N = N+1
50 PRINTN, S
64 GO 70 30

RUN

e BN WN -
.)
rROON =

*N.B. The program will continue executing without ending. Use control-C
to stop it.

70

Example:

You can see that line 25 is skipped.

1FORI=1TO5
20 GOSUB 60

30 PRINT I, S

40 NEXT |

50 END

60S=0

70 FORJ=1to !
80 S =S8+

90 NEXT J

100 RETURN

RUN

N LWN -
RV W=

1
1
18A=38

15PRINT A
20GOTOA

25PRINT A¥A
30 END

RUN
30

Chapter 9

PAl

72

CHAPTER Iﬂ

ARRAYS
— DIM

73

74

Chapter 10

ARRAYS

An array is a set of variables, or elements, all with the same name, and are
only distinguished by a number written in brackets after the name (i.e. the
subscript). This is the method to set up a table of variables in the com-
puter. A (1) is the I'th element in the Array A, where | is integer

Syntax:

Example: 70 REM THE GAS BILLS OF HALF YEAR
20 DIM A(6)
30 REM ASK FOR 6 BILLS
40FORI=1to 6
50 PRINT “THE BILL. AMOUNT =";
60 INPUT A (1)
70S=S+A (1)
80 NEXT |
99 PRINT “THE TOTAL AM

DIMension reserves storage locations for arrays and matrices. The
dimension is either 1 or 2.

A (6) is a one dimensional array with 6 elements, whereas A (6, 6) is
a two dimensional array or matrix with 6 x 6 = 36 elements.

The two-dimensional array requires two subscripts to specify each of
the elements — just like the column and row numbers in a normal matrix.

For example, to set up a two-dimensional array A with dimensions 3
and 5, you use a DIM statement

DIiM A(3, 5)

This then gives you 3*5 = 15 subscripted variables
A(1,1),A(1,2)...A(1,5)
A(2,1),A(2,2)...A(2,5)
A(3,1),A(3,2)...A(3,6)

75

Example:

76

10DIM A (3,3)
20FORI=1t03
30FORJ=1t03
40A (1, J) =1+

50 PRINT A (1,J);

60 NEXT J
70 PRINT
80 NEXT |

RUN
2 3 4
3 4 5
4 5 6

Chapter 10

CHAPTER Iﬂ ﬂ

INPUT/OUTPUT COMMANDS
— INPUT

— READ/DATA

— RECTODRE

0 Tl I WV

77

78

Chapter 11

INPUT

INPUT
INPUT accepts data from the keyboard during program execution. The
2" is displayed as a prompt.

Syntax: INPUT variable 1, variable 2,

Examples: 714 INPUT A, B
20 PRINT A, B, A+B

30 END

RUN

?

,‘3 > any number you type in.

3 4 7 {computer output)

79

Chapter 11

PRINT

PRINT

PRINT displays the value of a variable, or the value of an expression on
screen.

Syntax: PRINT item, item, item

Example: 10 PRINT “BASIC PROGRAM”
2 LETA=3
3O PRINT A, A+A, A*A
40 END

RUN
BASIC PROGRAM (computer output)
3 6 9

In the PRINT statement, items can be separated by *;”" instead of
" Then no space between items will be printed.

Syntax: PRINT item ; item ; item ; item

Example: 714 PRINT 1,2, 1+2
20 PRINT “A=";3

RUN
123 (computer output)

A=3

The PRINT statement terminated by a semi-colon does not generate a
line feed.

Syntax: PRINT item ;

Example: 10 FORA=1T0 19
20 PRINT A;
30 NEXT
40 END

RUN
12345678910 (computer output)

80

Chapter 11

LPRINT

LPRINT

LPRINT is just like PRINT except that it prints on the printer instead of
on the television screen.

Syntax: LPRINT item, item

Example: 10 LPRINT “THIS PROGRAM"’
20 LPRINT “PRINT OUT THE CHARACTER SET”
3 FORN=32T0 96
40 LPRINT CHR$ (N),
50 NEXT

RUN
(A set of characters is printed on the printer).

*Note that when LPRINT is used, the printer and 1/O interface must be
ready. For details please refer to the operating manual of the parallel
and Serial |/O Interface.

81

Chapter 11

[rae

TAB is used in a PRINT statement to move the cursor to the right
before printing. The number of positions moved is indicated in the {).

Syntax: TAB (variable)

TAB (n) puts the cursor to the nth column on the screen. n can be
any integer from @ to 64.

Example: PRINT TAB(5); “A”; TAB(5); “A”
A A

READ

READ and DATA statements are coordinated to furnish a fixed li
data values to the user program. A READ statement initializes variables
getting value of data items from DATA statements.

-h

ist

by

Syntax: READ (Variable 1, Variable 2)

Example: 10 DATA 1,3,5,7
20 READ X, Y
30 READ A
40 READ B
50 PRINT X+Y, A+B
60 END

RUN
4 12

82

Chapter 11

DATA

DATA

DATA supplies data items to a READ statement. The READ statement
reads items according to the order of the line number of DATA statement.
All DATA statements must be at the beginning of a BASIC program or
before the READ statements.

Syntax: DATA constant 1, constant 2, constant3......

Example: 70 DATAS, 1,6
20 DATA 3,5,7,4,9,2
30FORI=1T03
40 READ A, B, C
50 PRINT A, B, C

60 NEXT |
70 END
RUN

8 1 6
3 5 7
4 9 2

Example: 10 REM FIND MAXIMUM
20 REM AND AVERAGE
30 DATA 0.125,3,0.6, 7
40 DATA 23,9.3,26.2, 8
50 M =—-99
60S=0
79FORI=1T7T08
80 READ N
90 S=S+N
100 IF N>M THEN M=N
110 NEXT |
120 A =S/8
130 PRINT M, A
RUN 25.2 9.5281

Chapter 11

RESTORE

If it should become necessary to use the same data more than once in
a program, the RESTORE statement makes it possible to move the DATA
pointer back to the first DATA value.

Syntax: RESTORE

Example: 710DATA 1,3, 5,7, 9
20 READ A, B, C
30 RESTORE
40 READ X
BP PRINT A, C
60 PRINT X
70 END

RUN
1 5
)

84

CHAPTER ﬂ 2

TAPE STORAGE
— CSAVE

— CLOAD

— CRUN

85

86

Chapter 12

Cassette Storage Module

You can further expand your Dick Smith Wizzard Computer System by
using the Cassette Storage Module. The Dick Smith Wizzard BASIC allows
you to load and save programs which you enter in the computer. By
recording a program on a tape, you can save it as a permanent record.
Later you can load the program from the cassette tape into the the com-
puter’s memory if you want to use that program again.

The Cassette Storage Module is connected to the computer system by
a cassette interface cable, as shown in fig 12.1.

This edge cover is removed

87

Chapter 12

CSAVE

Syntax: CSAVE

Procedure:

1.

2,
3.

88

Connect the cassette storage module with the computer system by
the cable.

Put a good quality tape cassette in place.

Press the “PLAY" and “RECORD" buttons on the module to select
the “RECORD"” mode. Notice that the cassette will not start to move.
The computer controls the cassette motor power supply. Therefore
the tape does not start to move until the computer tells it to do so.
Record the reading of the digital tape counter in the module. This is
for you to easily locate the correct tape position when you want to
load your program back into the computer.

Key in the “CSAVE"” command (followed by RET’N). As soon as you
do, your program will begin recording on the tape, and the screen will
list this program.

When the program has been recorded, the prompt sign will appear on
the screen, Press the “‘stop’’ button on the module.

Chapter 12

CLOAD

Syntax: CLOAD
Procedure:

1. Connect the cassette storage module with the computer system by
the cable.

2. Put the tape cassette in place and rewind it to the correct position.

3. Press the play button only to select the “LOAD" option of the
module.

4. Key in the “CLOAD” command (followed by RET’'N). As soon as
you do so, the recorded program will begin to load into the computer
system, and the screen will list this program.

5. After the program has been loaded, the prompt sign will appear on the
screen. Press the “stop” button on the module.

N.B. Hf the program in tape is from the Dick Smith Wizzard Tape Library,
there will be speech and sound effects coming out from the TV set

during loading of the program.
Syntax: CRUN
SRUN is the same as CLOAD+RUN. The computer will load the program
and the RUN it automatically.

The procedure is the same as CLOAD except you key in “CRUN"’ instead
of “CLOAD".

89

CHAPTER ﬂ

GRAPHICS & SOUND FUNCTIONS
— CLS

— COLOR

— CHAR

— PLOT

— SOUND

—JOoy

N

92

Chapter 13

Graphic Commands

The graphics commands feature a 32-column by 24-row screen display.
The 28 print positions normally used in Dick Smith Wizzard BASIC
correspond to columns 3 through 30. Because some display screens may
not show the two leftmost and two rightmost characters, your graphics
may be more satisfactory if you use columns 3 through 30 and ignore
columns 1 and 2 on the left and 31 and 32 on the right.

There are 4 Graphic commands, they are:

1. CLS — clear screen.

2. COLOR — Define color.

3. CHAR — Define characters.

4. PLOT — Locate and display characters.

CLS

The Clear command is used to clear the entire screen. When CLS statement
is executed, the space character is piaced in ali positions on the screen.

eg. 19CLS
20 PRINT “CLEAR SCREEN"

When this program is run, the screen is cleared and then “CLEAR
SCREEN’ appears on the screen.

CLEAR SCREEN
>n

Fig. 13.1
93

Chapter 13

COLOR
COLOR

The “COLOR” command provides a capability for you to specify screen
character colors.

Syntax: COLOR Character-set-number, foreground-color-code, back-
ground-color-code.

Example: COLOR 2, 18, 14.

Each character display on your computer screen has two colors. The
color that makes up the character itself is called the foreground color. The
color that occupies the rest of the character position on the screen is called
the background color. Sixteen colors are available on the Dick Smith
Wizzard BASIC. The color codes are given below:

Color Code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Grey
16 White

To use the COLOR commands, you must also specify to which
character set the character to be printed belongs. The list of ASCHI

94

Chapter 13

character codes for standard characters is given in Appendix D. The
character-set-numbers are given below.

CHARACTER SET CHARACTER SET
NUMBER ASCif CODE NUMBER ASCll CODE
1 0-7 17 128-135
2 8-15 18 136-143
3 16-23 19 144-151
4 24-31 20 152-159
5 32-39 21 160-167
6 4047 22 168-175
7 48-55 23 176-183
8 56-63 24 184-191
9 64-71 25 192-199
10 72-79 26 200-207
1 80-87 27 208-215
12 88-95 28 216-223
13 96-103 29 224-231
14 104-111 30 232-239
15 112-119 31 240-247
16 120-127 32 - 248-255

Note that the screen is filled with space characters unti} you place
other characters in some of these positions. |f you use character set 5 in
the COLOR statement, all space characters on the screen are changed to
background-color specified since the space character is contained in set 5.

This is demonstrated by the program:

Example: > 100 REM COLOR DEMOSTRATION
>200 CLS
> 300 COLOR 5,6,6
>400 GO TO 4090

> RUN
(the SCREEN color is changed from light green to light blue.)

*Press CTL-C to stop the program.
95

Chapter 13

CHAR
CHAR

The “CHAR" command allows you to define your own special graphics
characters. You can redefine a new set of character patterns.

Sytnax: CHAR char-code, pattern-identifier

The char-code specifies the code of the character you wish to define
and must be a numeric expression with a value between 0 and 255,

The pattern-identifier is a 16-character expression which specifies the
pattern of the character you want to use in your program. This expression
is a coded representation of the 64 dots which makes a character pattern
on the screen. These 64 dots comprise an 8 x 8 grid.

LEFT RIGHT
BLOCKS | BLOCKS

ROW 1
ROW 2
ROW 3
ROW 4
ROW5
ROW 6
ROW 7?7
ROW 8

Fig. 13.2
Each row is partitioned into two blocks of four dots each.

ANYROW [| [[T[]]]

LEFT | RIGHT
BLOCK BLOCK

Fig. 13.3

96

Chapter 13

Each character in the string expression describes the pattern of dots
in one block of a row. The rows are described from left to right and from
top to bottom. That is, the first two characters in the string describe the
pattern for row one of the dot-grid, the next two describe row two,
and so on.

Characters are created by turning some dots “On’’ and leaving others
“Qff". To create a new character, you must tell the computer what dots to
turn on or leave off in each of the 16 blocks that construct the character.

If the string expression is less than 16 characters, the computer will

assume that the remaining characters are zero. If the string is longer than 16
characters, the computer will ignore the excess.

Blocks (0= Off. 1 =0n) Code

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
111

-nmgom;pcooo\lmm.hwroao

Fig. 13.4

97

Chapter 13

Example: To describe the dot pattern pictured below:

CHAR 32,18 18 FF 3C 7E FF 14 36

LEFT RIGHT BLOCK

BLOCKS | BLOCKS CODES
ROW 1 18
ROW 2 18
ROW 3 FF
ROW 4 3C
ROW 5 7E
ROW 6 FF
ROW 7 14
ROW 8 36

Fig. 13.5

CHARACTER PATTERN OF CHARACTER CODE — 32,

Remember that CHAR command only defines a character. To display
the character on the screen you will need to use the PLOT command.
When CHAR is performed, any character already on the screen with the
same char-code is changed to the new character.

Example: >714CLS
>15C0OL0OR5,4,6
>20 CHAR 32,18 18 FF 3C 7E FF 14 36
>30GO TO 39

> RUN
(The screen will be filled with the above pattern because the
screen is filled with space characters after CLS and the space
character has a code number of 32 which has been redefined.)
Note that the characters 32-95 is already defined in the computer. But
you can redefine the characters yourself.
As the example above, we redefined the space by a special character.
If the reset button is pressed, all redefined characters and screen color
will be reset.

98

Chapter 13

PLOT

PLOT
The “PLOT’ statement allows you to place a character anywhere on the
screen.
COLUMNS
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
143 15 L7 49 1111131151417 119 421 4234251 27)29 { 31

1

2

3

P

5

6—

7

8-

9

R 10 —

O 1

W 12—

S ..

15

16 —

17

18 —

19

20—

21

22 —

23

24—~

Fig. 13.6

A value of 1 for column-number indicates the left most column of the

screen,

A value of 1 for row-number indicates the top row of the screen. The

screen can be thought of as a “’grid” as shown.

Because columns 1, 2, 31 and 32 may not show on some TVscreens,

you may want to use only column-numbers 3 through 30.

Syntax: PLOT column number, row number, character code

99

Chapter 13

Example: PLOT 15, 10, 65

This makes the screen show a character “A” on the position
specified by column-number = 15, row-number = 10.

Example: 10 CLS
20 COLOR 5,4, 6
30 CHAR 33, 18 18 FF 3C 7E FF 14 36
40 FOR X =1T0 32
50 PLOT X, 14, 33
60 NEXT
70 GOTO 70

RUN

Fig. 13.7

The pattern forms a line across the screen.

100

Example:

Chapter 13

g5 CLS

1B FORA=1TO 16
20 COLOR A+16, A, A
30 NEXT

40 FORX=1T0 32
50 FORY=1TO20
60PLOT X, Y, X+4+128
70 NEXT

80 NEXT

90 GOTO 90

RUN

The program shows a set of colour bars on the TV screen.

101

Chapter 13

SOUND

The SOUND statement tells the computer to produce tones of different

frequencies. There are 3 music channels and you can program the 3
channels independently.

Sound:

Syntax: SOUND frequency code; duration code, frequency code; duration
code,.....

Example: 710 SOUND 4,5,6,7, 7:7
(plays a bell sound)

The frequency code and duration code are numeric expressions. |f the
evaluation of any of the numeric expressions results in a non-integer value,
the result is rounded to obtain an integer.

Frequency code:

1 Rest 17 D¥#, Eb
2 C 18 E

3 C#,Db 19 F

4 D 20 F#, Gb
5 D# Eb 21 G

6 E 22 G#, AP
7 F 23 A (above middle C)
8 F#,Gb 24 A#, Bb
9 G 25 B

10 G#,Ab 26 C (high C)
11 A (below middle C) 27 C¥#, Db
12 A¥#,Bb 28 D

13 B 29 D#,Eb
14 C (middle C) 30 E

16 C#, Db 31 F

16 D 32 Rest

102

Chapter 13

Duration code:

NS
coaseane

NOoOOPdWN =8
—
N

In a SOUND statement, the first pair of data will specify the first
channel, the second pair will specify the second channel and the third
pair will specify the third channel.

103

Chapter 13

Example: 70 REM SONG
20 SOUND 26,3, 21,3, 14,3
30 SOUND 30,3, 25,3, 18,3
40 SOUND 28,3, 23,3, 16,3
50 SOUND 21,5, 16,5, 9;5
60 SOUND 26,3, 21,3, 14,3
70 SOUND 283, 23,3, 16,3
80 SOUND 30,3, 25,3, 18,3
90 SOUND 26,7, 21,7, 14,7

100 GOTO 29

1A
o ® —H’

CRGRY

1

Fig. 13.8
> RUN

The computer will play the melody as shown in Fig. 13.1

104

Chapter 13

Joy

JOoy

The joy-stick function, JOY, allows the user to input information to
the computer based on the position of the joy-stick. This function is
useful for the user in writing game program.

The key board of Creativision computer is divided into two parts,
ie, left and right. Each part has a joy-stick and two fire buttons. The
joy-stick function is use to input these conditions.

Fire A=1 Fire B=2 5

©
-

00oooao
00oocaoo
O0oooa
oooon

d
a
a
0O

Fig 13.8 The corresponding value of the joy-stick position and fire
button,

Syntax: JOY (N) N =1 for left hand side joy-stick position.
N = 2 for right hand side joy-stick position.
N = 3 for left hand side joy-stick fire button.
N = 4 for right hand side joy-stick fire button.

The function give the value of the position of the joy-sticks.

Example: 10 PRINT JOY (1)

RUN
3

This example prints out the position of the left hand side joy-stick.
In this example, the left hand side joy-stick is at right direction.

105

Chapter 13

Example: @5 CLS

10 LET A=JOY (1)

20 IF A=3 THEN GOTO 100
30 IF A=7 THEN GOTO 200
40 GOTO 10

199 PLOT4, 10,32

119 PLOT 28,10, 65

120 GOTO 19

200 PLOT28,10,32

219 PLOT4,10,65

22¢ GOTO 10

RUN

This program will display the character “A’'" on the left hand side or

right hand side of the TV screen according to the position of the joy-
stick.

106

CHAPTER lﬂ —U-l

SYSTEM MEMORY ACCESS
— PEEK
— POKE

107

108

Chapter 14

PEEK

PEEK is a function that returns the value (decimal integer in the range @ to
255) read from the specified location in the memory.

Syntax: PEEK (address).
For example you can see what value is at a specified location.
Example: 10 PRINT “ADDRESS”, “CONTENT”
20FORK=0TO 209

30 PRINT K, PEEK (K)
49 NEXT K

POKE

As discussed above, with the PEEK function, we can read the
memory content from any location. The function of POKE is just the
complement of PEEK. Hence, you can write a data into a memory
location.

SYNTAX: POKE address, data
Example: POKE 300, 48

This replaces the content at the address location 3@@ with the value
48. If you type

PRINT PEEK 300
you get your number 48 back. (Try poking in other values).

Note: POKEing values into some memory locations may cause the
computer to “‘crash”’. To remedy this, press RESET,

109

110

CHAPTER lﬂ 5

DICK SMITH WIZZARD
SYSTEM EXPANSION

111

112

Chapter 15

There are some options for expanding your Dick Smith Wizzard system.
The following are the introductions. For details please refer to the
corresponding manual.

1.

The Cassette Storage Module

Together with the Dick Smith Wizzard BASIC you can save BASIC
programs on audio cassette tapes and load them back again.

The operation of the cassette can be program controlled. The Baud
rate of data transfer is 600.

The Parallel and Serial 1/0 interface

The Parallel and Serial 1/0 Interface module provides a wide range of
input and output facilities. The module has one parallel port which is
for your printer. This port is of standard “Centronics Bus’” so that it
can connect to every Centronics Bus printer, eg EPSON MX80,
SEIKOSHA GP-80, CENTRONICS 779, etc.

As for the other two ports, one is for Floppy Disk Drive and one is
for Telephone interface.

The Memory Expansion Module

The memory of the Dick Smith Wizzard Computer can be expanded
by adding the "Memory Expansion Modules”” to the system. The
Memory Expansion Module has the option of 16K and 32K.

You can add 16K, 32K or more than on emodule to your system. The
Dick Smith Wizzard Computer can be expanded up to 64K byte.

The standard ASCII keyboard

A standard rubber keyboard having superior feeling and more ease to
key in.

113

14

APPENDIX
TABLE OF BASIC STATEMENTS

115

116

Appendix A

The BASIC-Quick Reference Manual

Numbers are stored to an accuracy of 6 digits. The largest number you
can get is 10%. All statements can be used either as commands or in
a program,

Functions:

1) Arithmetic operators

+I—I*I/I **

2) Relational operators
>,<,=>=<=<>

3) Arithmetic functions:

SQR - Square root

INT — integer part

RND — Random number
ABS — Absolute magnitude

SGN — Sign
COS — Cosine
SIN — Sine
EXP — eX

TAN — Tangent

LOG — Natural logarithm

4) String functions:

LEN — Length

STR$ — String of numeric argument
VAL — Numeric value of string
ASC — ASCII value

CHR$ — Character

LEFT$ — Left characters

MID$ — Middle characters

RIGHT$ — Right characters

17

5)

6)

7)

8)

118

Appendix A

Logical operators

AND

OR Relation and logical expressions have value 1 if true, @ if false.
NOT

Graphics and sound functions:

CLS — Clear screen

PLOT — Plot character on screen

COLOR — Set colour

SOUND — Produce tone of different frequency and duration
CHAR — Define character

JOY — Joy stick function

Program statements

DIM — Dimensions
STOP

END

GOTO

GOSUB

RETURN

PRINT
PRINT TAB
LET

DATA
READ
RESTORE

Commands:

LIST
RUN
NEW
CONT

9)

Appendix A

CLOAD — Load program on tape
CSAVE — Save program on tape

CRUN — Load program on tape and run
CNT'L C — To halt program

Other Statements

PEEK — Return the value stored at the location specified
POKE — Load a value into a specified location

LPRINT — Print on line printer

LLIST — List on line printer

119

)

APPENDIX D

ERROR MESSAGES

121

122

Appendix B

Error Messages

If Dick Smith Wizzard BASIC detects an error that causes program execu-
tion to terminate, an error message is printed. The explanation of each
error is given below,

The error message

NEXT WITHOUT FOR ERROR
WITHOUT GOSUB ERROR
MISSING LINE NUMBER ERROR
MISSING OPERAND ERROR
SYNTAX ERROR

OVERFLOW ERROR

. ILLEGAL NESTED FOR ERROR

ILLEGAL NESTED GOSUB ERROR
SYSTEM ERROR
STACK OVERFLOW ERROR

. IF ERROR

O) } ERROR

S A)) LEVEL ERROR

. STRING NOT FOUND ERROR

. STRING EVALUATION ERROR
. DIVIDED BY ZERO ERROR

. OUT OF DATA ERROR

. DATA AREA OVERFLOW

. DIM ERROR

. STRING LENGTH ERROR

123

124

APPENDIX

TYPICAL PROGRAM EXAMPLES

(i) FINDH.C.F.

(i) SOLVE QUADRATIC EQUATION

(iiiy FIND THE SQUARE ROOT BY ITERATIVE METHOD
{iv) FIND THE AREA OF A TRIANGLE

(vi MARKSIX GAME

125

126

Appendix C

Example (i): 70 REM FIND H.C.F.
20 INPUT X, Y
30IFX>Y THEN X=X-Y
40 IF X<YTHENY=Y-X
50 IF X><Y THEN 30
60 PRINT X
70 END

RUN
23
29
3

127

Example (ii): 70 REM SOLVE QUADRATIC EQUATION

128

20 REMA X+ X +B+X+C=0
25 REM X+ X —1.5X +0.5=0
30 DATA 1,—1.5, 4.5

40 READ A, B, C

50 D=B*B — 4+A«C

60 IF D<@ THEN 129

70 D =SQR (D)

80 X = (—B+D)/(2+A)

99 Y =(—B—D)/(2+A)

100 PRINT X, Y

110 END

120 PRINT “NO REAL ROOTS”
1390 END

RUN
10.5

Appendix C

Appendix C

Example (iii): 70 REM: TAKE SQUARE ROOT
20 REM: BY ITERATIVE METHOD
30 REM: | = INITIAL VALUE
40 REM: N NUMBER
50N =29
60 PR'IN T “VALUE I=";

70 INPUT

8JFORJ=1TO 10

9 1=(1+N/1)+ 9.5

100 PRINT J; “APPROXIMATION"”, |
120 NEXT |

150 PRINT “SQUARE ROOT I =";1
200 END

RUN

VALUE | =

20

APPROXIMATION 10.5
APPROXIMATION 62023
APPROXIMATION 4.7134
APPROXIMATION 4.4721
APPROXIMATION 4.4721
APPROXIMATION 4.4721
APPROXIMATION 4.4721
APPROXIMATION 4.4721
10 APPROXIMATION 4.4721
SQUARE ROOT | = 4.4721

©oONONANWN=

129

Appendix C

Example (iv): 70 REM FIND AREA OF TRIANGLE

*

130

20 REM A, B, AND C ARE 3 SIDES
30 INPUT A, B, C

49 S = A+B+C

50 S = 0.5+S

60 P = 5+(S—-A}*(S-B)*(S—C)

70 A =SOQR (P)

80 PRINT “AREA=" A

99 END

RUN
A=3
B=4
C=5
AREA=6.0

This program does not check the values of A, B, and C such that they
can form a triangle. As an exercise you may add a few statements for
the checking.

Example (v):

Appendix C

10 REM MARK SIX GAME
20 DIM A(6)

30 FORN=1T06

49 R = RND (0)+ 36

50 P=INT(R)

60 A(N)=P+1

70 IF N =1THEN 150

89 M=N-1

9BJ=0

100 J = J+1

118 IF A(N) = A(J) THEN 40
120 IF J<M THEN 100
150 PRINT A(N)

200 NEXT N

300 END

RUN
3
3)
32
17
24

15

or any random number

131

132

APPENDIX |

ASCII CODES

133

134

ASCHI
CODE

32
33

35
36
37
38
39

40
41
42
43
44
45
46

47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

CHARACTER

+ o ——

-

©O NOoOOObhWN=O0O S~

.vv ”/\-. .

(Space)
(exclamation point)
(quote)

(number or pound sign)

(dollar)
(percent)
(ampersand)
(apostrophe)

(open parenthesis)
(close parenthesis)
{asterisk)

{plus)

(comma)

(minus)

{period)

(slant)

{colon)
(semicolon)
(less than)
(equals)
(greater than)
(question mark)

ASCHI
CODE

65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90

Appendix D

CHARACTER

@ (at sign)

OZ2EErxe«<—zx OTMmMmOoOO WD

N<X S<CHWWDO

135

136

Bik ST

BASIC

INTERPRETER

